Algèbre linéaire Exemples

Trouver le domaine ((6x+5)/(2x+7))/((4x)/5-3/4)
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Placez le signe moins devant la fraction.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2
Multipliez les deux côtés de l’équation par .
Étape 4.3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1.1.1
Annulez le facteur commun.
Étape 4.3.1.1.1.2
Réécrivez l’expression.
Étape 4.3.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1.2.1
Factorisez à partir de .
Étape 4.3.1.1.2.2
Annulez le facteur commun.
Étape 4.3.1.1.2.3
Réécrivez l’expression.
Étape 4.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.1
Multipliez par .
Étape 4.3.2.1.2
Multipliez par .
Étape 4.3.2.1.3
Multipliez par .
Étape 5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 6